УДК 621.311.22

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ ВЕЛИЧИНЫ ПОВЕРХНОСТИ НАГРЕВА КОНВЕКТИВНЫХ ЭКРАНОВ ВОДОГРЕЙНЫХ КОТЛОВ В ТЭС ИЖЕВСКОГО ЗАВОДА

МОШКАРИН А.В., д-р техн. наук, ШЕЛЫГИН Б.Л., канд. техн. наук, Ивановский государственный энергетический университет; ЗАЙЧИКОВ В.Н., инж., Ижевский котельный завод

Для повышения эффективности использования теплоты уходящих газов предложено в конвективных газоходах водогрейных котлов дополнительно размещать промежуточные экраны. Определена оптимальная величина поверхности нагрева конвективных экранов. Установлены зависимости изменения показателей работы котлов по сравнению с базовым вариантом.

Предприятие «Ижевский котельный завод» производит водогрейные котлы, работающие без накипеобразования на низкокачественной воде, не требуя специальной дорогостоящей водоподготовки.

Радиационные и конвективные поверхности нагрева всех модификаций котлов теплопроизводительностью $0,3\div1,74$ МВт представляют собой экраны, выполненные из труб диаметром \varnothing 159×4,5 мм (рис. 1). В каждой секции трубы размещены с шагом 200 мм, и для отдельных экранов промежутки между трубами закрыты стальными полосами шириной 60 мм.

Характер потока воды внутри каждой трубы – спиралеобразный. Движение воды в пределах каждого экрана – последовательное (от трубы к трубе) [1].

Отличительной особенностью конструкций данных котлов при одном промежуточном экране в конвективном газоходе является неудовлетворительное тепловосприятие конвективных поверхностей нагрева ввиду:

- низких скоростей газов (2,9÷3,3 м/с);
- большого диаметра труб;
- коридорной компоновки труб в газоходе.

При низких значениях конвективных поверхностей нагрева температуры уходящих газов за котлом, в зависимости от вида сжигаемого топлива, составляют $9_{yx}=200\div300~{}^{\circ}\text{C}$, а КПД котла брутто находится в пределах $\eta_{\kappa}=75\div88~{}^{\circ}\text{N}$, что на $4\div6~{}^{\circ}\text{N}$ ниже нормальных значений ($85\div92$) % [2].

Поэтому целесообразно установить оптимальное значение площадей конвективных поверхностей нагрева, соответствующее максимальной экономичности водогрейных котлов при минимальных капиталовложениях и топливных затратах на эксплуатацию энергоустановки.

В этих целях выполнено расчетное исследование условий работы водогрейных котлов марок КВа-1,74 ГМ и КВр-1,16 К, соответственно сжигающих природный газ и уголь, при изменении значений конвективных поверхностей нагрева. Для этого в используемой универсальной расчетной модели котлов ИКЗ [3] изменение значений конвективных поверхностей нагрева достигалось за счет размещения в газоходах котлов дополнительного количества промежуточных экранов 3 (рис. 1).

В расчетном анализе исходные конструктивные характеристики промежуточных экранов применительно к четырем вариантам исследования представлены в табл. 1. Для модификаций котлов марок КВа-1,74 ГМ и КВр-1,16 К с максимальной теплопроизводительностью соответственно 1,74 и 1,16 МВт изменялось количество промежуточных экранов от одного (существующий вариант) до четырех.

Исследование проводилось с использованием технических характеристик природного газа и каменного угля соответственно с теплотой сгорания $31,0 \, \text{МДж/м}^3$ и $21,6 \, \text{МДж/кг}$ [4].

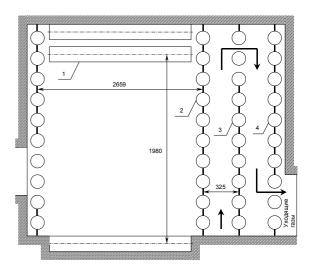


Рис. 1. Размещение поверхностей нагрева в котле КВа-1,74 ГМ: 1,2 – потолочный и задний экраны топочной камеры; 3 – промежуточный экран конвективного газохода; 4 – задний экран конвективного газохода

Результаты вариантных тепловых расчетов водогрейных котлов при максимальном значении относительной теплопроизводительности Q / $Q_{\text{ном}} = 1,0$ и температуре наружного воздуха $t_{\text{нар}} = -40~^{\circ}\text{C}$ представлены в табл. 2. При этом за счет присосов холодного воздуха коэффициент избытка воздуха в уходящих газах составляет $\alpha_{\text{vx}} = 1,15 \div 1,45$.

В случаях предельных тепловых нагрузок с увеличением числа промежуточных экранов (n) температура уходящих газов заметно снижается (рис. 2), достигая нормальных значений ($130 \div 210~^{\circ}$ С) для вариантов 3 и 4. Увеличение числа экранов до четырех снижает температуру уходящих газов для котла КВа-1,74 ГМ на 76 °С, а для котла КВр-1,16 К — соответственно на 111 °С согласно зависимостям, °С:

- для котла КВа-1,74 ГМ $\Delta \vartheta_{yx}$ = 43,3 (n 1) 0,65 ;
- для котла КВр-1,16 К $\Delta \theta_{yx} = 60,3 (n-1)^{0,61}$.

При переходе от первого к четвертому варианту значения потери теплоты с уходящими газами в зависимости от вида топлива снижаются до $7,3\div10,4\%$ (табл. 2). В результате этого в зависимости от числа экранов, температур наружного воздуха $t_{\text{нар}}$ и марки котла КПД брутто возрастает согласно зависимостям, % (рис. 3):

- для котла КВа-1,74 ГМ $\eta_{\kappa} = 86.5 + 0.0361 \left(t_{\text{Hap}} + 40 \right) + 2.33 \left(n 1 \right)^{0.49};$
- для котла КВр-1,16 К η_{κ} = 75,12 + 0,0401 (t_{Hap} + 40) + 3,6 (n 1) 0,53 .

1

Таблица 1. Конструктивные характеристики промежуточных экранов, размещаемых в конвективных газоходах водогрейных котлов

Наименование характеристик	Котел КВа-1,74 ГМ			Котел КВр-1,16 К				
	Варианты			Варианты				
	1	2	3	4	1	2	3	4
Количество промежуточных экранов в газоходе	1	2	3	4	1	2	3	4
Площадь поверхности нагрева экранов, м ²	11,14	22,28	33,42	44,56	9,96	19,92	29,88	39,84
Ширина газохода, м	2,1	2,1			2,1			
Высота газохода, м	2,3				2,1			
Глубина газохода, м	0,325	0,65	0,975	1,3	0,325	0,65	0,975	1,3
Наружная поверхность обмуровки газохода, м ²	2,86	5,72	8,58	11,44	2,73	5,46	8,19	10,92

Таблица 2. Результаты вариантных тепловых расчетов водогрейных котлов при максимальном значении относительной тепловой нагрузки $Q/Q_H = 1,0$ и температуре наружного воздуха $t_{Hap} = -40$ °C

Наименование характеристик	ристик Котел КВа-1,74 ГМ			Котел КВр-1,16 К					
	Варианты			Варианты					
	1	2	3	4	1	2	3	4	
Расход воды через котел, т/ч	60				40				
Теплота сгорания топлива, МДж/м³ (МДж/кг)	31,0				21,6				
Температура воды на входе в котел t', °C	70			70					
Теплопроизводительность котла, МВт	1,74				1,16				
Температура уходящих газов ϑ_{vx} , °C	210	170	142	125	306	253	214	185	
Потеря теплоты от наружного охлаждения котла q_5 , %	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	
Потеря теплоты с уходящими газами q2, %	11,4	9,5	8,19	7,3	18,36	15,44	13,3	10,4	
КПД котла (брутто <u>)</u> η _κ , %	86,5	88,4	89,71	90,6	75,12	78,04	80,18	81,5	
Расход топлива, м³/c (кг/c)	0,0639	0,0625	0,0614	0,0608	0,07	0,0675	0,0656	0,0650	

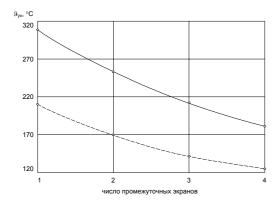
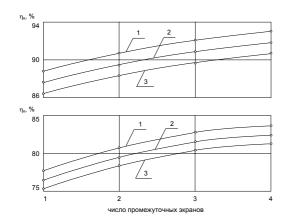



Рис. 2. Изменение температуры уходящих газов в зависимости от количества промежуточных экранов и марки котла:
———— KBa-1.74 ГМ:———— KBo-1.16 K

Если количество промежуточных экранов увеличить от 1 до 4, то с повышением температуры наружного воздуха $t_{\text{нар}}$ от -40° до +20 °C КПД котла $\eta_{\text{к}}$ при сжигании твердого топлива возрастает на $5.9 \div 8.5$ %, а при сжигании газового топлива — соответственно на $5 \div 6.5$ %.

Таким образом, при переходе от первого варианта к четвертому наблюдается повышение эффективности использования располагаемой теплоты топлива при соответствующей его экономии. Уменьшение расхода сжигаемого топлива с увеличением количества размещаемых экранов (рис. 4) в зависимости от марки котла может достигнуть $4.8 \div 7.1$ % от номинального значения в существующем варианте при n=1.

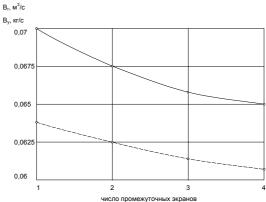


Рис. 4. Изменение расхода топлива в зависимости от количества промежуточных экранов:

--- KBa-1,74 ГМ; — KBp-1,16 K

Экономия топлива в зависимости от числа n повышается до 0,0031 m^3/c (природный газ) и 0,005 кг/с (каменный уголь) согласно уравнениям:

• для котла KBa-1,74 ГМ
$$\Delta B_r = 0,0017 (n-1)^{0,49};$$
 • для котла KBp-1,16 K

• для котла КВр-1,16 К $\Delta B_y = 0,0029 (n-1)^{0,53}$.

Однако утилизация теплоты уходящих газов при соответствующей экономии топлива сопровождается существенным повышением значения конвективной поверхности нагрева, возрастающей по сравнению с исходным вариантом (n = 1) на $30 \div 33 \text{ м}^2$ (табл. 1), что может заметно увеличить металлоемкость котлов.

Оптимальное количество промежуточных экранов в конвективных газоходах котлов при неизменной теплопроизводительности энергоустановки

может быть определено технико-экономическими расчетами на основании метода годовых затрат.

Известно, что обоснование и выбор предпочтительных решений базируются на двух основных показателях: капитальных вложениях (К) для создания объекта производства и издержках производства тепловой энергии (И) [5]. При этом величина К рассматривается как единовременные, однократные затраты, а И – как ежегодные расходы.

Тогда годовые затраты оцениваются выражением, руб.,

$$3 = P \cdot K + И.$$

где Р – норма дисконта.

В рассматриваемом анализе под величиной К понимаются общие капиталовложения в дополнительные поверхности нагрева с учетом соответствующей обмуровки котла. Издержки производства тепловой энергии (И) определяются топливными расходами и расходами на ремонт.

Норма амортизации при продолжительности реализации отдельного варианта объекта (m = 15 лет) оценивалась по формуле

$$H_a = \frac{i}{(1+i)^m - 1} = \frac{0,15}{(1+0,15)^{15} - 1} = 0,021,$$

где і = 15 % – ставка процента (стоимость денег).

С учетом налога на имущество (2 %) норма дисконта

$$P = 0.15 + 0.021 + 0.02 = 0.191.$$

По данным ИКЗ относительная стоимость поверхности экрана $L_{\text{пов}}$ = 5000 руб/м², а минимальные значения цен топлив L_{T} (в 2004 г.) для природного газа и угля соответственно приняты на уровне 1,1 руб/м³ и 1,2 руб/кг.

Сравнительный анализ выполнен как применительно к ценам 2004 г., так и на перспективу (2007 г.). При этом с учетом ожидаемой инфляции (принято 25 %) новые значения отмеченных характеристик увеличены в 1,75 раза и приняты равными: $L_{\text{пов}}' = 8750$ руб/м², $L_{\text{T}}' = 1,93$ руб/м³ и $L_{\text{T}}' = 2,1$ руб/кг.

Расчетные исследования проводились при двух значениях числа часов использования максимума тепловой нагрузки котлов $\tau_{\text{макс}}$ (3000 и 4000 ч). При этом в зависимости от повышения поверхности нагрева промежуточных экранов (ΔH) определялось изменение расчетных характеристик по сравнению с базовым (исходным) вариантом, когда n=1.

Если изменение значения капитальных вложений в котел составляет, руб.,

$$\Delta K = \coprod_{nob} \Delta H$$
,

тогда изменение постоянной части годовых расходов, руб.,

$$\Delta M_{\text{noct}}$$
 = 0,191 ΔK .

Изменение годовых расходов на топливо оценивалось по формуле, руб.,

$$\Delta N_T = 3600 \tau_{MAKC} \coprod_T \Delta B$$
,

где ΔB — изменение расхода топлива при максимальной тепловой нагрузке котла (Q / Q_{ном} = 1,0) и температуре наружного воздуха $t_{\text{нар}}$ = $-40\,^{\circ}\text{C}$, м³/с или кг/с (табл. 2).

Изменение годовых расходов на ремонт оценивалось по формуле, руб.,

$$\Delta M_p = 1.1 \frac{1}{m} \Delta K = 0.073 \Delta K.$$

Изменение общих эксплуатационных расходов, включая расход на топливо и ремонт, составляет, руб.,

$$\Delta N_{\text{of}} = \Delta N_{\text{T}} + \Delta N_{\text{p}}.$$

С учетом изменения постоянной части годовых расходов ($\Delta N_{\text{пост})}$ изменение годовых затрат составляет, руб.,

$$\Delta 3 = \Delta N_{\text{noct}} + \Delta N_{\text{of}}$$
.

Исходные данные и результаты проведенного технико-экономического анализа при изменении расчетных характеристик по сравнению с базовым вариантом (n = 1), представлены в табл. 3÷6 и на рис. 5 и 6.

Выбор наиболее предпочтительного варианта и определение оптимального количества промежуточных экранов осуществлялись по максимальному изменению годовых затрат ($\Delta 3$) по отношению к базовому варианту (n = 1).

Для котла КВа-1,74 независимо от уровня цен при минимальном значении $\tau_{\text{макс}}$ = 3000 ч оптимальным является второй вариант, когда в газоходе, в дополнение к существующему, целесообразна установка еще одного промежуточного экрана.

В этом случае при снижении температуры уходящих газов до 9_{yx} = 170 °C (рис. 2) КПД котла возрастает на 1,9 %, достигая, в зависимости от температуры наружного воздуха значений η_{κ} = 88,4÷90,6 % (рис. 3). Расход природного газа снижается на 0,0014 м³/с, (соответственно).

При дальнейшем повышении количества экранов (n = 3 и 4), несмотря на повышение экономической эффективности котла, из-за повышенной металлоемкости суммарные годовые расходы существенно возрастают, превышая издержки базового варианта на 7÷14 тыс. руб/год (рис. 5).

С увеличением числа часов работы котла на максимальной нагрузке до $\tau_{\text{макс}}$ = 4000 ч заметно (на 33 %) возрастает изменение топливных затрат ΔM_{T} (табл. 3 и 4). Тогда, независимо от цен топлива, необходима дополнительная утилизация теплоты уходящих газов с установкой трех промежуточных экранов (рис. 1). Это позволит при снижении температуры уходящих газов до $\theta_{\text{ух}}$ = 140 °C повысить КПД котла до η_{K} = 89,6÷91,9 % и, как следствие, сократить топливную составляющую затрат, экономя 9÷16 тыс. руб/год.

Для котла КВр-1,16 К, независимо от стоимости топлива и числа часов использования максимума тепловой нагрузки котла $\tau_{\text{макс}}$, самым оптимальным следует признать вариант с тремя промежуточными экранами (рис. 6). Это обусловлено не только повышенной ценой твердого топлива (при пониженной теплоте сгорания угля, по сравнению с природным газом), но и высокой температурой уходящих газов в базовом варианте (300÷305 °C), что в большей мере требует дополнительных конвективных поверхностей нагрева.

Если количество промежуточных экранов увеличится до n = 3, то при снижении температуры уходящих газов на 90÷95 °C (рис. 2) и повышении КПД котла до η = 80,3÷82.5 % (рис. 3) ожидается минимальное значение суммарных годовых затрат.

Дальнейшее повышение количества экранов до четырех неперспективно, т.к. возможная экономия топливных затрат компенсируется затратами на капиталовложения и ремонт.

По результатам исследования (рис. 5 и 6) установлена обобщающая зависимость, позволяющая в случаях размещения в газоходах оптимального количества промежуточных экранов прогнозировать экономическую эффективность котлов при изменении цены топлива (по сравнению с существующей) и

числа часов использования максимальной тепловой нагрузки котла $\tau_{\text{макс}}.$

Экономия годовых затрат, по сравнению с базовым вариантом, руб \cdot 10^{-3} ,

Таблица 3. Результаты вариантных расчетов для котла КВа-1,74 ГМ и цены топлива в 2004 г.

Наименование характеристик	Вариан	Варианты					
	1	2	3	4			
Изменение величины конвективной поверхности нагрева ∆H, м ²	-	11,14	22,28	33,42			
Изменение значения капиталовложений в котел ∆К, руб · 10 ⁻³	-	55,7	113,4	167,1			
Изменение постоянной части эксплуатационных расходов $\Delta N_{\text{пост}}$, руб \cdot 10 ⁻³	_	10,64	21,7	31,91			
Изменение расходов на ремонт $\Delta \text{И}_{\text{p}}$, руб · 10^{-3}	-	4,07	8,28	12,2			
Изменение расхода топлива ΔB , $M^3 \cdot 10^3/c$	_	- 1,4	- 2,5	- 3,05			
Число часов использования максимума тепловой нагрузки котла т _{макс} , ч	3000	•	•	•			
Изменение топливных расходов $\Delta M_{\rm T}$, руб \cdot 10^{-3}	-	- 16,5	- 29,6	- 36,18			
Изменение годовых затрат $\Delta 3$, руб \cdot 10^{-3}	-	- 1,79	+ 0,38	+ 7,93			
Число часов использования максимума тепловой нагрузки котла т _{макс} , ч	4000	•	•	•			
Изменение топливных расходов ΔM_{τ} , руб \cdot 10^{-3}	-	- 22,0	- 39,5	- 48,23			
Изменение годовых затрат $\Delta 3$, руб \cdot 10^{-3}	-	- 7,28	- 9,48	- 4,0			

Таблица 4. Результаты вариантных расчетов для котла КВа-1,74 ГМ и цены топлива, ожидаемой в 2007 г.

Наименование характеристик	Варианты						
	1	2	3	4			
Изменение величины конвективной поверхности нагрева ΔH , M^2	-	11,14	22,28	33,42			
Изменение значения капиталовложений в котел ∆К, руб · 10 ⁻³	_	97,5	198,5	292,4			
Изменение постоянной части эксплуатационных расходов ∆И _{пост} , руб · 10 ⁻³	_	18,61	37,9	55,86			
Изменение расходов на ремонт ∆И _р , руб · 10 ⁻³	_	7,11	14,49	21,35			
Изменение расхода топлива ΔB , $M^3 \cdot 10^3/c$	_	- 1,4	- 2,5	- 3,05			
Число часов использования максимума тепловой нагрузки котла τ _{макс} , ч	3000	3000					
Изменение топливных расходов $\Delta M_{\rm T}$, руб \cdot 10 ⁻³	_	- 28,9	- 51,8	- 63,31			
Изменение годовых затрат ∆3, руб · 10 ⁻³	_	- 3,18	+ 0,59	+ 13,9			
Число часов использования максимума тепловой нагрузки котла τ _{макс} , ч	4000	·	•	•			
Изменение топливных расходов $\Delta M_{\rm T}$, руб \cdot 10 ⁻³	_	- 38,83	- 69,05	- 84,39			
Изменение годовых затрат ∆3, руб · 10 ⁻³	_	- 12,75	- 16,7	- 7,18			

Таблица 5. Результаты вариантных расчетов для котла КВр-1,16 К и цены топлива в 2004 г.

Наименование характеристик	Варианты					
	1	2	3	4		
Изменение величины конвективной поверхности нагрева ∆H, м ²	_	9,96	19,92	29,88		
Изменение значения капиталовложений в котел ∆К, руб · 10 ⁻³	-	49,8	99,6	149,3		
Изменение постоянной части эксплуатационных расходов $\Delta N_{\text{пост}}$, руб \cdot 10 ⁻³	-	9,51	19,01	28,51		
Изменение расходов на ремонт $\Delta \text{И}_{\text{p}}$, руб · 10^{-3}	-	3,64	7,27	10,9		
Изменение расхода топлива ΔB , $M^{3} \cdot 10^{3}/c$	_	- 2,5	- 4,4	- 5,28		
Число часов использования максимума тепловой нагрузки котла тмакс, ч	3000	•	•	•		
Изменение топливных расходов ΔM_{τ} , руб \cdot 10 ⁻³	_	- 32,4	- 57,61	- 68,42		
Изменение годовых затрат $\Delta 3$, руб \cdot 10^{-3}	_	- 19,25	- 31,33	- 29,01		
Число часов использования максимума тепловой нагрузки котла тмакс, ч	4000	•	•	•		
Изменение топливных расходов $\Delta N_{\rm T}$, руб \cdot 10 ⁻³	_	- 41,2	- 76,81	- 91,2		
Изменение годовых затрат $\Delta 3$, руб \cdot 10^{-3}	_	- 28,0	- 50,5	- 51,79		

Таблица 6. Результаты вариантных расчетов для котла КВр-1,16 К и цены топлива, ожидаемой в 2007 г.

Наименование характеристик	Варианты					
	1	2	3	4		
Изменение величины конвективной поверхности нагрева ΔH , м ²	-	9,96	19,92	29,88		
Изменение значения капиталовложений в котел ∆К, руб · 10 ⁻³	_	87,15	174,3	261,3		
Изменение постоянной части эксплуатационных расходов ΔN_{noct} , руб · 10^{-3}	_	16,65	33,3	49,9		
Изменение расходов на ремонт $\Delta M_{\rm p}$, руб \cdot 10 ⁻³	_	6,37	12,71	19,1		
Изменение расхода топлива ∆B, м ³ · 10 ³ /с	_	- 2,5	- 4,4	- 5,28		
Число часов использования максимума тепловой нагрузки котла τ _{макс} , ч	3000	•	•	•		
Изменение топливных расходов ΔM_{τ} , руб \cdot 10 ⁻³	_	- 56,7	- 100,8	- 119,7		
Изменение годовых затрат $\Delta 3$, руб $\cdot 10^{-3}$	_	- 33,7	- 54,8	- 50,7		
Число часов использования максимума тепловой нагрузки котла т _{макс} , ч	4000	•	•	•		
Изменение топливных расходов ΔM_{T} , руб \cdot 10 ⁻³	-	- 75,6	- 134,4	- 159,6		
Изменение годовых затрат $\Delta 3$, руб \cdot 10^{-3}	_	- 52,6	- 88,4	- 90,56		

Таблица 7. Значения постоянных коэффициентов для оценки экономической эффективности котлов по сравнению с базовым вариантом

Наименование характеристик	Котел КВа-1,74 ГМ		Котел КВр-1,16 К
Оптимальное количество промежуточных экранов	2	3	3
Величина минимальной экономии затрат A, руб · 10 ⁻³	1,79	0,28	31,33
Константа кратности изменения цены топлива L	0,91	0,91	0,833
Константа кратности изменения числа часов использования	0,003	0,031	0,00061
максимальной нагрузки котлов М			

Кратность повышения цены топлива, по сравнению с уровнем цен 2004 г.:

для котла КВа-1,74 ГМ

$$K_{ij} = 1 + L(\dot{ij}_{T} - 1,1);$$

для котла КВр-1,16 К

$$K_{\mu} = 1 + L (\Box_{T} - 1,2).$$

Кратность повышения числа часов использования максимальной нагрузки котла по сравнению с $\tau_{\text{макс}}$ = 3000 ч:

$$K_{\tau} = 1 + M (\tau_{MAKC} - 3000).$$

Значения констант А, L и М в зависимости от марки котла и оптимального количества промежуточных экранов представлены в табл. 7.

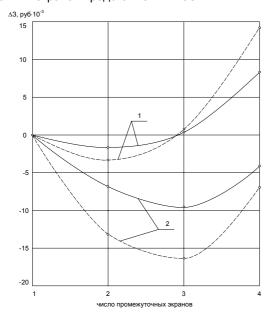


Рис. 5. Изменение годовых затрат для котла КВа-1,74 ГМ в зависимости от количества промежуточных экранов и цены топлива:

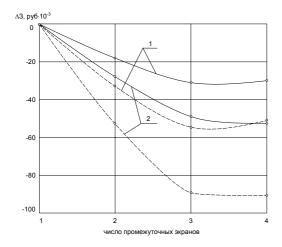


Рис. 6. Изменение годовых затрат для котла КВр-1,16 К в зависимости от количества промежуточных экранов и цены топлива:

$$1 - \tau_{\text{MAKC}} = 3000 \text{ y}; \ 2 - \tau_{\text{MAKC}} = 4000 \text{ y};$$

$$1 - \tau_{\text{MaKC}} = 3000 \text{ y; } 2 - \tau_{\text{MaKC}} = 4000 \text{ y;}$$

 $- \text{L}_{\text{T}} = 1,2 \text{ py6/kr; } - - - \text{L}_{\text{T}}' = 2,1 \text{ py6/kr}$

выводы

- 1. Для повышения тепловой эффективности котлов ИКЗ марок КВа-1,74ГМ и КВр-1,16К предложено увеличить число промежуточных экранов конвективных поверхностей нагрева соответственно до двух и трех.
- 2. По результатам серии вариантных тепловых расчетов котлов установлены изменения значений температур уходящих газов, КПД котлов и расходов топлива и получены обобщающие математические зависимости.
- 3. На основании технико-экономических расчетов определены оптимальные компоновки котлов КВа-1,74ГМ и КВр-1,16К, в зависимости от интенсивности загрузки энергоустановок и перспективного повышения цен на топливо.

Список литературы

- 1. Патент 2228805 РФ. Способ очистки внутренней поверхности трубных полостей / Р.И. Рогачев; Бюл. № 14, 2004.
- 2. Котлы малой и средней мощности и топочные устройства: Отраслевой каталог 15-83 / НИИЭИНФОРМ-ЭНЕРГОМАШ. - М., 1983.
- 3. Тепловой поверочный расчет котлов на ЭВМ ЕС: Метод. указ. / ИЭИ; Сост. В.Л. Гудзюк, А.С. Ривкин, Б.Л. Шелыгин. - Иваново, 1989. - 36 c.
- 4. Тепловой расчет котельных агрегатов (нормативный метод) / Под ред. Н.В. Кузнецова, В.В. Митора, И.Е. Дубовского, Э.С. Карасиной. – М.: Энергия, 1973.
- 5. Мисриханов М.Ш., Мозгалев К.В., Неклепаев Б.Н., Шунтов А.В. О технико-экономическом сравнении вариантов электроустановок при проектировании // Электрические станции. - 2004. - № 2. - С. 2-8.